[1612.03242] StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Synthesizing high-quality images from text descriptions is a challenging problem in computer vision and has many practical applications. Samples generated by existing text-to-image approaches can roughly reflect the meaning of the given descriptions, but they fail to contain necessary details and vivid object parts. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) to generate 256x256 photo-realistic images conditioned on text descriptions. We decompose the hard problem into more manageable sub-problems through a sketch-refinement process. The Stage-I GAN sketches the primitive shape and colors of the object based on the given text description, yielding Stage-I low-resolution images. The Stage-II GAN takes Stage-I results and text descriptions as inputs, and generates high-resolution images with photo-realistic details. It is able to rectify defects in Stage-I results and add compelling details with the refinement process. To improve the diversity of the synt

1 mentions: @shion_honda
Date: 2019/04/23 12:47

Referring Tweets

@shion_honda StackGAN [Zhang+, 2017, ICCV] 説明文から256*256pxの対応画像を生成するStackGANを提案。2段構成で、1段目では粗い画像を生成し、2段目では画像の精細化を担う。データ拡張手法として、説明文の埋め込みに摂動を加えるConditioning Augmentationも提案。 https://t.co/iz5khvxagH #NowReading https://t.co/m69u8yaX5E

Bookmark Comments

Related Entries

Read more Goodfellow先生おすすめのGAN論文6つを紹介
0 users, 0 mentions 2018/05/06 09:46
Read more Deep Learningを用いた教師なし画像検査の論文調査 GAN/SVM/Autoencoderとか .pdf
0 users, 0 mentions 2018/10/09 06:53
Read more GAN(と強化学習との関係)
23 users, 1 mentions 2019/04/04 17:16
Read more 敵対的生成ネットワーク(GAN)
67 users, 18 mentions 2019/02/25 12:47
Read more Icml2018読み会_overview&GANs
0 users, 0 mentions 2018/07/28 06:23