【論文紹介】医用画像への転移学習の有効性について Transfusion: Understanding Transfer Learning for Medical Imaging - Speaker Deck

【論文紹介】医用画像への転移学習の有効性について Transfusion: Understanding Transfer Learning for Medical Imaging - Speaker Deck

特に医用画像を対象としたタスクにおいて、ImageNetなどの自然画像から学習したモデルを用いた転移学習がよく行われていますがそれは本当に有効なの?という疑問を検証した論文を紹介します。 結果として、転移学習はパフォーマンスにほとんど影響がなく、収束速度が早くなるという限定的な恩恵であることが明らかになり、さらにこの速度向上は、事前学習されたモデルの重みを使うのではなくその統計量から平均と分散を一致させることによっても十分得られることが新たにわかりました。 他にもいろいろ面白い実験があり、転移学習の実態をよく知ることができる論文です。

Date: 2019/10/06 12:49

Related Entries

Read more tensorflow2でhuggigfaceのtransformersを使ってBERTを文書分類モデルに転移学習する - メモ帳
0 users, 1 mentions 2019/10/22 12:50
Read more KelpNetで転移学習 - じんべえざめのノート
0 users, 0 mentions 2018/09/21 12:24
Read more はじめての自然言語処理 BERT を用いた自然言語処理における転移学習 | オブジェクトの広場
12 users, 3 mentions 2019/07/28 08:17
Read more SONY Neural Network Console で転移学習をやってみる | cedro-blog
0 users, 0 mentions 2018/08/07 12:24