Applied Sciences | Free Full-Text | DE-CapsNet: A Diverse Enhanced Capsule Network with Disperse Dynamic Routing | HTML

Applied Sciences  | Free Full-Text | DE-CapsNet: A Diverse Enhanced Capsule Network with Disperse Dynamic Routing | HTML

Capsule Network (CapsNet) is a methodology with good prospects in visual tasks, since it can keep a stronger relationship of spatial information than Convolutional Neural Networks (CNNs). However, the current Capsule Network do not provide performance as expected on several benchmark data sets with complex data and backgrounds. Inspired by the multiple capsules of Diverse Capsule Network (DCNet++) and the Spatial Group-wise Enhance (SGE) mechanism, we propose the Diverse Enhanced Capsule Network (DE-CapsNet), a hierarchical architecture which uses residual convolutional layers and the position-wise dot product to build diverse enhanced primary capsules with various scales of images for complex data. The architecture adopts the Sigmoid function in a dynamic routing algorithm to get a more uniform distribution of routing coefficients which obviously distinguishes the assignment probabilities between capsules. DE-CapsNet achieved state-of-the-art accuracy on Canadian Institute For Advance

Date: 2020/02/13 18:52

Related Entries

Read more GitHub - victordibia/handtracking: Building a Real-time Hand-Detector using Neural Networks (SSD) on...
0 users, 1 mentions 2019/11/09 15:51
Read more Neural networks for Graph Data NeurIPS2018読み会@PFN
25 users, 9 mentions 2019/01/26 09:46
Read more [1911.12116] Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
0 users, 4 mentions 2019/11/28 23:20
Read more GitHub - thunlp/GNNPapers: Must-read papers on graph neural networks (GNN)
1 users, 0 mentions 2019/08/18 08:16
Read more Deep Forest :Deep Neural Networkの代替へ向けて - QiitaQiita
0 users, 0 mentions 2018/04/25 17:22