論文紹介: Latent Variable Modelling with Hyperbolic Normalizing Flows(ICML 2020) - Speaker Deck

論文紹介: Latent Variable Modelling with Hyperbolic Normalizing Flows(ICML 2020) - Speaker Deck

. 1 ౦ژେֶେֶӃɹ৘ใཧ޻ֶܥݚڀՊɹίϯϐϡʔλՊֶઐ߈ ഡ୩ݚڀࣨɹॿڭ ෱Ӭɹ௡ਹ Latent Variable Modelling with Hyperbolic Normalizing Flows Avishek Joey Bose 1 2 Ariella Smofsky 1 2 Renjie Liao 3 4 Prakash Panangaden 1 2 William L. Hamilton 1 2 Abstract The choice of approximate posterior distributions plays a central role in stochastic variational infer- ence (SVI). One effective solution is the use of normalizing flows to construct flexible posterior distributions. However, one key limitation of ex- isting normalizing flows

1 mentions: @fukunagaTsu
Date: 2020/07/20 03:50

Related Entries

Read more Why Computer Vision is a Hard Problem (TensorFlow in Practice) - YouTube
0 users, 1 mentions 2020/01/30 00:52
Read more Kotlin for Data Science - Kotlin Programming Language
1 users, 1 mentions 2020/02/23 03:50
Read more Strike a Pose: Gesture Recognition in JS with Machine Learning - Charlie Gerard | JSConf Hawaii 2020...
0 users, 0 mentions 2020/03/09 05:20
Read more 機械学習パイプラインのデバッガについての論文:Debugging Machine Learning Pipelines | 10001 ideas
0 users, 1 mentions 2020/03/27 02:02
Read more Contrastive Self-Supervised Learning - HackMD
0 users, 1 mentions 2020/04/28 15:50
Read more 論文の図の代替テキストの書き方
0 users, 1 mentions 2020/05/06 08:21