[2011.09490] Can nonlinear parametric oscillators solve random Ising models?open searchopen navigation menucontact arXivsubscribe to arXiv mailings

We study large networks of parametric oscillators as heuristic solvers of random Ising models. In these networks, known as coherent Ising machines, the model to be solved is encoded in the dissipative coupling between the oscillators, and a solution is offered by the steady state of the network. This approach relies on the assumption that mode competition steers the network to the ground-state solution. By considering a broad family of frustrated Ising models, we instead show that the most efficient mode generically does not correspond to the ground state of the Ising model. We infer that networks of parametric oscillators close to threshold are intrinsically not Ising solvers. Nevertheless, the network can find the correct solution if the oscillators are driven sufficiently above threshold, in a regime where nonlinearities play a predominant role. We find that for all probed instances of the model, the network converges to the ground state of the Ising model with a finite probability.

1 mentions: @guiltydammy
Date: 2020/11/21 14:22

Referring Tweets

@guiltydammy t.co/gocgqULatZ 修士の時にやってた研究に対する、いや実際これ効率悪いやで、っていう結果が出てきて、完全に人生の中での喉のつっかえが取れる案件があった

Related Entries

Read more m3 ai team - Speaker Deck
0 users, 52 mentions 2019/11/21 00:51
Read more Data Science drives improvement of LINE messenger - Speaker Deck
0 users, 2 mentions 2019/11/21 11:20
Read more Bayesian Methods for Media Mix Modeling with Carryover and Shape Effects – Google ResearchGoogle Res...
0 users, 1 mentions 2020/01/22 08:20
Read more TRI-AD, Inc - ML Engineer for Planning
0 users, 1 mentions 2020/06/07 23:21
Read more 【オンライン】DMM meetup #17 〜データ本部の取り組み紹介〜 - connpass
0 users, 13 mentions 2020/08/20 06:52