An algorithm for Bayesian optimization for categorical variables informed by physical intuition with applications to chemistry | Aggregate Intellect

An algorithm for Bayesian optimization for categorical variables informed by physical intuition with applications to chemistry | Aggregate Intellect

Designing functional molecules and advanced materials requires complex interdependent design choices: tuning continuous process parameters such as temperatures or flow rates, while simultaneously selecting categorical variables like catalysts or solvents. To date, the development of data-driven experiment planning strategies for autonomous experimentation has largely focused on continuous process parameters despite the urge to devise efficient strategies for the selection of categorical variables to substantially accelerate scientific discovery. We introduce Gryffin, as a general purpose optimization framework for the autonomous selection of categorical variables driven by expert knowledge. Gryffin augments Bayesian optimization with kernel density estimation using smooth approximations to categorical distributions. Leveraging domain knowledge from physicochemical descriptors to characterize categorical options, Gryffin can significantly accelerate the search for promising molecules an

Date: 2021/01/13 17:21

Related Entries

Read more ドメイン駆動設計で保守性をあげたリニューアル事例 〜 ショッピングクーポンの設計紹介 - Yahoo! JAPAN Tech Blog
49 users, 35 mentions 2021/01/12 00:00
Read more We Don't Need Data Scientists, We Need Data Engineers - Mihail Eric
2 users, 104 mentions 2021/01/13 18:53
Read more GitHub - hirokatsukataoka16/cvpaper.challenge-summary: コンピュータビジョン研究コミュニティcvpaper.challengeのサマリ。サーベイ資...
0 users, 2 mentions 2021/01/14 06:52
Read more KaggleOpsを考える ~ MLflow + Colaboratory + Kaggle Notebook ~ | GMOインターネット 次世代システム研究室
50 users, 14 mentions 2021/01/15 05:21
Read more Google Cloudではじめる実践データエンジニアリング入門[業務で使えるデータ基盤構築]:書籍案内|技術評論社
50 users, 16 mentions 2021/01/16 09:51